1	(a)	(i)	biological catalyst	[1]
		(ii)	linkageO same unit as in glucose as on question paper that is rectangles	[1]
		(iii)	chromatography	[1]
	(b)	(i)	NHCO—linkage different units -NH and -CO on same monomer uni	
			All three [2] two points [1]	[2]
		(ii)	amino acids	[1]
	(c))	propanol + ethanoic acid = propyl ethanoate + water reactants [1] products [1]	[2]
		(ii)	ester linkage correct rest of molecule correct	[1] [1]
		(iii)	bromine water fat 1 orange or yellow or brown to colourless fat 2 remains orange or yellow or brown Accept Potassium Manganate(VII) with corresponding colour changes	[1] [1] [1]
		(iv)	soap or sodium salts (of carboxylic acids)/sodium stearate alcohol/glycerol	[1] [1] [TOTAL = 15]

2 (a (i) CH₃-CH==CH₂

	(ii)	conseq to (i)	[1]
		COND evidence of continuation	[1] [1]
	(iii)	monomer COND because it has a double bond or unsaturated or alkene NOT addition	[1] [1]
(b)		to remove fibres or remove solid NOT precipitate, NOT impurities, NOT to obtain a filtrate	[1]
	(ii)	because silver atoms have <u>lost electrons</u> OR oxidation number increased	[1]
	(iii)	silver chloride	[1]
(c)		name of an ester formula of an ester if they do not correspond MAX [1] Accept name - terylene for formula ester linkage and continuation If a 'fat' complete structure must be correct e.g. $C_{17}H_{35}$ etc. Mark for formula only - [1]	[1] [1]
	(ii)	alcohol or alkanol NOT a named alcohol	[1]
(d)		acid loses a proton base accepts a proton	[2] [1]
		OR same explanation but acid loses a hydrogen <u>ion</u> (1) and base gains hydrogen <u>ion</u> (1)	
	(ii)	only partially ionised or poor hydrogen ion donor or poor proton donor NOT does not form many hydrogen ions in water or low concentration of hydrogen ions NOT pH	[1]

TOTAL = 15

(a	Avoga or forr or 6 x or as ANY c	idro's Number of particles nula mass in grams 10 ²³ particles accept atoms, ions and molecules many particles as there are carbon atoms in 12.00g of ¹² Ca one	[1]
(b)		moles of Mg = $3/24 = 0.125$ moles of CH ₃ COOH = $12/60 = 0.200$ magnesium is in excess	
		OR 3.0g of magnesium react with 15g of acid only 12.0 g of acid present magnesium is in excess	[3]
	(ii)	Mark conseq to (i) but NOT to any simple integer moles of $H_2 = 0.1$	[1]
	(iii)	Mark conseq to (ii) but NOT to any simple integer Volume of hydrogen = 0.1×24 = 2.4 dm^3	[2]
(c)		moles of NaOH = 25/1000 x 0.4 = 0.01	[1]
	(ii)	Mark conseq to (i) but NOT to any simple integer moles of acid = $0.01/2 = 0.005$	[1]
	(iii)	Mark conseq to (ii) max 10M concentration of acid = $0.005 \times 1000/20$ = 0.25 mol/dm^3	[1] [1]

TOTAL = [10]

3

4	(a) (i)	no change in concentration of reagents or rates equal Accept no change in amounts or it is as if the reaction has Stopped	[1]
	(ii)	 back reaction is endothermic or the forward reaction is exothermic Increase in temperature favours the endothermic reaction which is the back reaction or vice versa. NB look for correct conclusion re thermicity and comment re position of equilibrium. 	[1] [1]
	(iii)	increased rate	[1]
		increased or molecules are closer	
		increased yield	[1]
		high pressure favours side with few molecules or smaller volume or moves to reduce the pressure this is product side this can be implied	[1] [1]
	(b)	CO_2 and H_2O balanced $2CH_3OH + 3O_2 = 2CO_2 + 4H_2O$	[1] [1]
	(ii)	methyl ethanoate water	[1] [1]
	(iii)	Methanoic (acid) accept formic acid	[1]
		TOTAL	. = 13